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Abstract

This final report is to document a summary of Ph.D Student, Mr. Steven
Hudnut who was supported by this ASSERT Grant, working on design of Piezo
Actuators with Functionally Graded Microstructure (FGM). Mr. Hudnut has
achieved both analytical modeling of several FGM piezo-laminate actuators with aim
of maximizing the bending displacement while minimizing the ihternal stress, thus
enhancing its fatigue life. .

Mr. Hudnut designed a new laser displacemént measurement apparatus by\
which the bending performance of bimorph and bimorph FGM piezo-actuators are:
characterized. He also contributed to the construction of lamination model for piezo
laminated composites, as well as optimization of the FGM bimorph actuator mode of

continuous piezo fibers.
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1. Modeling Of A Piezoelectric FGM Plate

Analytical study on piezoelectric laminate with functionally graded microstructure (FGM)
was established to construct a hierarchical modeling (Almajid er. al. (2000)). The study
consist of two models, one at microscopic level focusing on the microstructure of each
FGM layer, the other on laminating FGM layers to predict the out-of-plane displacement
of the FGM plate under applied‘electric field. The standard piezoelectric actuator plate is '
of bimorph type. These kinds of actuators develop high stresses in the interface between
the materials as shown in Figure 11. An FGM model has been investigated to reduce the

otherwise high stresses. FGM have shown a remarkable reduction of the residual stresses.

Figure 11 Typical stresses generated in a bimorph piezo-actuator

Figure 12 shows typical FGM structure where the mechanical and physical properties vary

along the z-direction.
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Figure 12 Piezoelectric FGM plate




A piezoelectric laminate consists of n laminae, each being a piezoelectric material with
specified electroelastic properties. The constitutive equations of a piezoelectric material in
the absence of temperature effects are given by

c,=C E, , “)

i i€ —€

mij

where o,

i ni

€; are the stress and strain tensor components respectively, E, is the electric

field vector component,C,,, is the elastic stiffness tensor, and e, are the piezoelectric -

ijk nij
coefficients. - The electroelastic constants of each lamina may be computed from some
micromechanical model such as the Eshelby type method as outlined by Dunn and Taya
(1993a, b). Two analytical modeling has been established to predict the out-of-plane
displacement and stress field of laminated piezoelectric plate, Classical Lamination

| Theory (CLT) and 2D-elasticity solution.

1.1 Classical Lamination Theory (CLT)

Classical lamination theory (CLT), as found in any composite textbook such as

Gibson(1994) assumes a state of plane stress along the z-axis where, 0, =0, =0, =0.

The constitutive equations of a piezoelectric lamina, eq. 4, under applied electric field in

the z direction only, and under the assumption of plane stress along the z-axis, reduces to

o 0, 0, 0 |l&e+zx, | [0 0 &[0
o,1=|0y 0pn O0.|J&+zk (|0 0 2,10 (5)
X 0 0 Q66 : }/.(:)' + ZK,\;\' 0 0 0 E~
where
_ C
Q; =Cy——=Cj
C33
(6)
e. = Cm .. —¢.

It is noted here that Q, , e; are the reduced stiffness constants and reduced piezoelectric

ij

constants that are modified by the assumption of plane stress and where €7,€7, and €,
are the in-plane strain components at mid-plane, z=0 as shown in Fig. 11, x_,x ,and &k,

are the curvatures of the plate.
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The resultant in-plane forces and bending moments are defined by
n B
Nm}=y j {oXdz, zdz) (7)
i=1 iy
carrying out the integration through the plate thickness of A, the resultant forces and

bending moments can then be written as

S

where
n h

[4,B,D]= '[ [@], (dz, zdz, zzdz) (9a)
i=l

V.M =Y [l {ENdz ) (9)

=l hl-l
where h;.; and h; are the distance from the bottom of the plate to the bottom and top

th

interfaces of the i lamina respectively, with i = 1,2, ... n. Hence the thickness of the i

lamina is then A;-h;;. Under the applied electric field or temperature change only, i.e.

M=N=0 in eq. (8), the in-plane strain and curvature can be solved as

My
[EE

Under a given electric field throughout the laminate, one can then predict the stress and

where

displacement field of each layer as well as the out-of-plane displacement of the composite
plate.
Different types of FGM were studied as shown in the Figure 13 where the

conventional bimorph type, one-sided FGM, and FGM bimorph are shown.




+V—

T
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(a) bimorph (b) one sided FGM laminate (c) FGM bimorph

Figure 13 Different types of FGM

The distribution of mechanical and piezoelectric (PZT) properties varies throughout the

FGM as shown in Figure 14.

FGM

n™ layer

i layer >

X

Figure 14 The distribution of mechanical and piezoelectric properties in the FGM

The distribution of both mechanical and piezoelectric properties could be explained

through the following formula
C, =[0.1+0.225(i - 1)]C,y;
e, =[0.6+ O.l(i —1)]epsr
where C,e; are the mechanical and piezoelectric properties of the i-th layer, respectively.

Crzrr€epr are the mechanical and piezoelectric properties of the piezoelectric material.

The mechanical and piezoelectric profile of the FGM bimorph is shown in Figure 15. The

properties are increasing toward the middle as FGM-bimorph type A while they are

‘ % (a) type A
- i (b) type B

decreasing in FGM-bimorph type B.

v

Figure 15 FGM-bimorph profile
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The mechanical and piezoelectric properties of the piezoelectric and the mid-plane gold

layer are shown in Table 5.

Cn Cn Cis Cy Cu €3 €3 ers

(GPa) (GPa) (GPa) (GPa) (GPa) (Cm?) | (C/m?) (C/m?)
PZT 121 75.4 75.2 111 21.1 -5.4 15.8 12.3
Au 101.43 | 41.63 41.63 101.43 {299 0 0 0

Table 5 mechanical and piezoelectric properties

The out of plane displacement of each case were calculated and tabulated in Table 6.

Type of  FGM | Standard bimorph, | FGM one-sided, | Bimorph ~ FGM, | Bimorph FGM,

microstructure Fig. 2(a) ' Fig. 2(b) Fig. 4(a) Type A Fig. 4(b) Type B

Electric Field | 1,000 1,000 1,000 1,000

(V/mm)

Applied Voltage (V) | 208 500 208 208

Laminate thickness | 0.5 0.5 0.5 0.5

(mm)

No. of layers 2 5 10 10

Layer thickness(mm) | 0.208 0.1 0.0416 0.0416
Au=0.082 Au =0.082 Au=0.082

Curvature (1/m) 0.99 0.992 2.15 0.773

Max. ©, (MPa) 12.18 8.5 9.8 9.36

Out-of —plane | 0.618 0.62 1.34 0.48

displacement  (mm)

for plate length of

50mm

Table 6 Comparison of out-of-plane displacement and maximum in-plane stress for various types of piezo-

composite plates

The FGM bimorph with mid-plane layer exhibited the maximum out of plane

displacement. The results of the in-plane stresses between layers of each case have been

are shown in Figure 16.
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As it can be seen from the graph, there exist high in-plane stresses between the layers.

That stress reached high in the case of bimorph. The high residual stresses have been

e
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(b) FGM bimorph type A

-1

-08-06-04-02 0 02 04 06 08 1

z/h
(d) standard bimorph

Figure 16 in-plane stresses throughout the plate thickness (z/h)

reduced through the use of FGM especially the FGM bimorph with intermediate layer.

The gold layer serves as relaxation for the piezoelectric since it does not posses

piezoelectric properties. There is a need to investigate on the shear stresses associated with

the in-plane stresses by using a more accurate model such as FEM.




1.2 2D elasticity model for piezo composite laminates in cylindrical bending

Pp X

P ' |

Figure 17 Simply supported piezoelectric plate under a state of plane strain in the y-direction )

For a laminate of multi orthotropic layers of piezoelectric material, the cylindrical bending
was constructed by following the solution method developed by Pagano (1969) and using

the condition of plane strain along the y-direction where, &, =€, =€, =0 as shown in

‘Figure 17. The laminate is simply supported on the ends. The constitutive equations of a
piezoelectric material in absence of temperature are given by

£; =8,,0,+d,E, (11)

i mij

€,are stress and strain tensor components, E, is electric field vector

m

where o,

component, Sy, are elastic compliance, d,; are the piezoelectric coefficients. The

mij

reduced constitutive equations for plane strain is given as,

X Rll R13 O O—,\' O O 6731 E.\‘
. t=|Ry; Ry 0 [o.p+ 0 0 dy[E, (12)
2¢e, 0 O Ryl|lo.) |ds 0 0||E,

where R, and ‘7.',‘ are the reduced compliance and piezoelectric coefficient and are

defined as
R,.j =S,.j ——S—'lS].3
Sy
g (13)
dfj =d,-j —-Sid”

33

where: S, and d; are the compressed forms of S, and d

ijki mij *

The boundary conditions of the simply supported piezoelectric laminate are given by
o\x=0,z)=0.{x=102)=0
w(x=0,z):w(x=l,z)=0

10




while the prescribed surface traction-free conditions of the upper and lower surfaces of the

laminate require

O':(x,—ﬁjz G:[x,}—z}:O
2 2 (15)

' ( h; ) 1+1( h; j |
. x,-—2—- =O')€: x,-2—
(i=12...NI (16)

h, ho)
u,l x,—=— 1=u,,| x,—&—

2 2

h.}_ |

where i represent the interface ID number between the i™ and the (i+1 )"1 laminae with i =
I ~ N-1 and the topmost and bottommost interfaces are defined as /* and (N-1 )
interfaces, respectively, while A; represent the thickness of the i" laminae. The top layer
corresponds to i = / while the bottom layer is i=N. The electric field is applied in the z-
direction through the thickness of the laminate. The electric field is expressed in the form

of Fourier series as

w35, T )

where A= EZE and for higher values of n, a nearly constant electric field can be realized.

Following Pagano (1969), the stress field in the i" layer is assumed to be

~ nr

; =(nx\ 4 nrw
ogz_f,,(z)z(—l—] Esin[—l—x) | (18)
o, =-f (z)i(%]%cos(nl xj




where f;(z) is an unknown function to be determined. The equilibrium equations given by

G, =0 (19)

are automatically satisfied if eq.(18) is substituted into eq.(19). The 2D-strain
compatibility equation is given by

2e -£, . —-€&, =0 20)

XZ.XZ Z.XX X.z2z

Substitution of eq.(12) into eq.(20) and use of eqs.(17) and (18) leads to a fourth order

ordinary differential equation

Rlilfi'm(z)_ r (2R1i3 + Rsis )fi"(z)-l- /14R3i3fi (Z) = /12333E0 (21)-

The solutions f,(z) can be expressed by

f.(2)= iA ., explm ﬁz,.)+£d—33—>—.E-"- 22)
j=l ARy

where A ; are constant and the values of m ; are given by

1
m')i - Cl
’ l (23)

where
a; =Rg5 +2R};
. 1
b, =la? —4RiRL (24)
¢ = 2R1i1

The stress field solutions of the i layer can be found using eq.(22) as

12



O'_';: = ii— Am exp(mﬁz,.)ﬂ—j[—cos(/ix)

nj=1
while the displacement components are found from the strain-displacement relation,

oo

u =3 iAji e"p(mf"z'{'mlia_%m?i + &(Jss)i—(dsl)i:l% icos(/bf)

n j= Rl T
= - 3 (26)
S o i ARy .
W, = ZZA,'; eXP(mﬁZi Rlam'ﬁ - ——sm(/lx)
0 j=l m, Jﬂ'

It is noted that the above solutions satisfy the boundary conditions of eq.(14) while the
surface traction-free boundary conditions of eq.(15) and the interface continuity conditions

of eq.(16), remain to be satisfied, resulting 4N equation for 4N unknown constants A it

Figure 18 shows some of the results obtained by the 2D elasticity model and FEM, the

distribution of the inter-laminar shear stress , 7,_ and normal stress, o _, near the free edge

along the longitudinal (x axis) direction.

20 AN3YS 5.5.3
ree 9 2000
—— Normal stress | o, 14:01:26
NODAL SOLUTION
---D---Shearstress , 7. stee=1
- SuB =1
15 TIME=1
sxy (AVG)
& o b RSYS=0
v v PoverGraphics
\ . EFACET=1
— AVRES=Mat
0 ®© IR 2. 2678-03
L3 o SHN =-,3652+07
£ ME =.3652+07
-~.3652+07
[ [y
L 3 g BR _y0iri07
5 E % - 1222407
” W
% 1228407
+203E+07
B3 20aws07
[} n 0 - .3652+07
) X 5 3+ Piero/Piezo Biworph , 1=50mm, t=0.Smm
0.5 0.4 0.3 0.2 0.1 0 -0.1
@ free-edge
(@ ®

Figure 18 Distribution of normal stress, & . and inter-laminar shear stress, 7, near free edge of a standard
bimorph piezo-actuator under applied voltage of 208V, predicted by (a) the 2D elasticity model and (b) FEM
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It follows from Fig. 18 that the predicted interlaminar shear stress near the free edge by

the 2D elasticity model is close to those by 2D FEM analysis.

2. Material Property Modeling For Fiber Based Piezoelectric FGM Bimorphs

Our work on piezéelectric FGM bimorphs has led to the need for accurate material
properties for piezoelectric composites. One possible fabrication method for piezoelectric
FGM actuators is through the use of stacked layers of piezo—ce‘rarn.i.c fibers. Inthese
devices the fiber volume fraction is graded from layer to layer thereby resulting in graded
material properties, including piezoelectric coupling, from layer to layer. Due to the fact
that the fiber diameter is nearly the same as the layer thickness within the composite and
that within an FGM the fiber distribution is clearly not uniform through the thickness of
-the composite, a uniform packing of fibers in these devices is not achieved. Because of
this deviation from idealized fiber packing many of the assumptions, including matrix
connectivity, of most micromechanics models, including those based on Eshelby’s (1957)
work, are violated. This leads to the use of the finite element method (FEM) for
evaluation of individual unit cells. Others have looked at this approach, but they assumed

symmetries which are not actually present in reality.

2.1.  The Fiber Based Piezoelectric FGM Bimorph

The basic design consists of stacking two piezoelectric FGM’s into a symmetric
bimorph as shown in Figure 19. The FGM laminates-consist of piezoelectric ceramic
fibers contained in an epoxy matrix. A second type of fiber, which is not piezoelectric, is
used as a "place holder" in the layers with lower piezoelectric fiber volume fraction, v¢, to

prevent adjacent layers from being pressed into each other during the cure cycle.

Poling >Y

Direction /Top Electrode (Al)

Brass Central
Electrode

Bottom Electrode (Al)
PZT Fibers
Second Fiber Type

Figuré 19. Schematic end view of the fiber based FGM bimorph actuator.
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2.2.  Modeling Fiber Based Piezoelectric Composite Material Properties

For the case of current piezoelectric fiber composites, the diameter of the fibers is
almost as large as the layer thickness and simply examining vy, does not give an accurate
picture of the packing of the fibers. For this reason, the concept of ceramic line fractions
in circular fiber composites was used. For this work the line fractions are labeled Y and Z,
where Y is the ratio of fiber diameter to fiber centerline spacing within each layer, and Z is _

the ratio of fiber diameter to layer thickness.

©%.% g® ©o
¢ 6°ese00

(A) (B)
Figure 20. Rectangular versus square packing of circular fibers in a composite. (A) Rectangular packing,

top image showing vy = .56, Z = .99 and Y = .71. (B) Square packing, top image showing v; = .56, Z =
Y=.84.

This distinction between square and rectangular fiber packing is important as v¢ in
the FGM layers will be solely a function of Y, the in plane line fraction because all layers
are the same thickness. Further, when considering that the dielectric constants of the fiber
and the matrix differ by a factor of 100, examination of the top images in Figure 20
indicates that the electric field will be .very different in the two different packing
arrangements. _' . ’ '

To show the deviation from the idealized results of most micromechanics models,
it is useful to compare the FEM results to an analytical model. The recently published
work of Mikata (2000) allows determination of the Eshelby tensor for a composite where
the poling axis is perpendicular to the long axis of the fiber. Even with the limitations
discussed above, use of Mikata’s Eshelby tensor in the Mori-Tanaka (1973) mean field
theory. as outlined by Dunn and Taya (1993b) will provide a comparison to the FEM
models to be used for material property determination.

The first step in the FEM analysis is to determine which unit cell to use and also which
planes of symmetry may be used to minimize the computatiohal effort required to solve the

model. For this work the 1/2 symmetric unit cell was chosen as shown in Figure21.

15
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Figure 21. Schematic representation of 1/2 symmetric unit cell with faces labeied for boundary condition
application. Poling axis is labeled as P in the figure. Faces 3a and 3b are the surface electrodes.

The choice to use the 1/2 symfnetric unit cell which models the entire layer thickness was
due to the fact that there is not a plane of electrical symmetry parallel to the 1-2 plane
halfway between faces 3a and 3b. This electrical asymmetry is clearly seen from the plot

of voltage versus thickness in a layer of the composite as shown in Figure 22.

131 3

1184 From a x=ghort, '
high mesh density model 1.84 .

105

91 1
781
65
52 1
39 1

Voits

261 1.41
13 1

1

0
I T N} T I T I U I T ’ T
© 10 20 30 40 50 60 79 80 go 101494 12143,

Distance (um)

Figure 22. Plot of Voltage versus thickness.

The symmetry planes in this model are faces 1b and 2b or the 1-3 and 2-3 planes. These
are clearly planes of mechanical and electrical symmetry. The boundary conditions for

this unit cell are listed below in Table 7.




Face Mechanical B.C.’s Electrical B.C.’s

1a All uq coupled Dy=0
2a All u, coupled D,=0
3a Alt us coupled V coupled
1b (Symm)u; =0 D=0
2b (Symm)u, =0 D,=0
3b All u; coupled V coupled

Table 7. Summary of boundary conditions on FEM 1/2 unit cell.

The model was meshed using 8-node hexahedral elements and a mapped mesh, as shown
in Figure 23, as this would providé more accurate results than provided by a free mesh of
4-node tetrahedrons. The choice of the hexahedral elements would also allow easier
control of mesh density in areas with high gradients such as the thin layer of matrix

material between the fiber and the surface electrodes.

XATYXER

3
¥
3
¥
 §
o

Figure 23. Exploded view of unit cell showing hexahedral elements. Fractions are Z = .99, Y = .56, v¢ = 43,
Shown in same orientation as unit cell of Figure 4. :

The number of elements used in this work ranged from 3540 to 3660. The small
range is due to the fact that most of the elements are in the region directly around the fiber
and over the small range of Z line fractions considered, the shape of the elements is fairly
constant. The solution at this element density was able to quickly converge and there are
no poorly shaped elements. The larger number of elements was for the low Y line
fraction. The small change added a few more elements in the area between fibers within
each layer, although there was not too much concern in this area as the gradients were all
fairly low. The practical upper limits of this model are Z = .995 and Y = .97 for v; = .76,

or very close to the maximum v of 0.785 for square packed cylindrical fibers.

17




The effective material properties were then found for a range of Y and Z line
fractions by using the FEM method to run a series of hypothetical experiments based on
those of Bent and Hagood (1997) with the addition of several new cases to determine the
rest of the material properties. These experiments are summarized in Table 8 and the
material properties for these calculations are listed in Table 9. It is further noted that in
cases 5 through 7, some of the symmetry conditions listed‘in Table 7 were removed and
replaced with a different set of constraints as the symmetric displacements would ndt_

always be valid in the shear cases.

Case Mechanical Loading " Electrical Loading Properties Obtained

Apply voltage V on top electrode,
Ground bottom electrode

1 u; = 0 on faces 1a, 2a, 3a, 3b (zero strain) €31, €a3p, €33, €33

Apply displacement u, on face 1a
2 uy = free on 2a, 3a, 3b V =0 on Electrodes (short circuit) Cy1, Cia Cyz €4
u; =usz=0o0n 1a, 23, 3a, 3b
Apply displacement u, on face 2a
3 u, = free on 1a, 3a, 3b V = 0 on Electrodes (short circuit) Cia Cop Cos, €3
u; = Uz =0o0n 1a, 2a, 3a, 3b
Apply disptacement u; on face 3a ’
4 us = free on 1a, 2a; us=0on3b V = 0 on Electrodes (short circuit) Caz Ca, Caa, €35
u; =up;=0on 1a, 2a, 3a, 3b
Apply displacement u; on face 3a
5 up = free on 1a, 2a, 2b; u,=0o0n 3b V = 0 on Electrodes (short circuit) Cusr €24
u; =uz=0on 1a, 2a, 2b, 3a
Apply displacement u; on face 1a .
6 us = free on 2a, 3a, 3b; uz=0on1b V = 0 on Electrodes (short circuit) Css, €15 -
ui = U, =0o0n 1a, b, 2a, 3a, 3b
Apply displacement u, on face 2a
7 u, =freeon 1a, tb, 3a, 3b; us=0on2b V =0 on Electrodes (short circuit) Ces
U, =usz =0on 1a, 1b, 2a, 2b, 33, 3b

Table 8. Load.cases for FEM 1/2 symmetric unit cell.

Cy Cy Cis Css Cus €34 €33 s £11/8y  €33/€
(Gpa) (Gpa) (Gpa) {Gpa) (Gpa) (C/m?) (C/m? (C/m?)
pPZT-5A 121 754 752 111 21.1 54 158 12.3 916 830

Improved
Epoxy

10.8 5.7 56 10.9 2.7 -0.002 0.007 0.005 7.3 7.3

Table 9. Material properties.

Some of the results of these analyses are plotted below in Figures 24 and 25 along with the
results from the micromechanics model using Mikata’s Eshelby Tensor as mentioned
above. The dashed vertical line is v¢ = 0.785, or the maximum square packing of round

fibers.
18
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Figure 24. Effective material properties (C;;, C}2, Cas, Css, €31, €33) VErsus vy.
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From examination of Figures 24 and 25 it is seen that the elastic stiffness constants
were independent of different Z line fractions and were predicted reasonably well by the
micromechanics model. However, for the piezoelectric and dielectric constants a strong
dependence on the Z line fraction was observed, but it wés also noted that the results
trended towards the micromechanics model! as the Z line fraction was reduced. Based on
this strong dependence of the piezoelectric and dielectric constants on the Z line fraction,
it is important to minimize the thickness of the matrix layer between the fibers and the
electrode.

Comparison of Figures 25(A) and 25(B) gives insight into the "black matrix/white
matrix" issue over whi_éh .species is actually the matrix at high v;. The white matrix case
gives the general lower limit for all but the highest Z line fraction and the black matrix

case gives an upper limit forZ=1.

2.3.  Analysis Of The Piezoelectric Fiber Based FGM Bimorph

Once the effective composite material properties had been found it was then
possible to predict the response of a fiber based FGM bimorph. From the analyzed cases,
the middle Z line fraction case of Z = .99 was chosen at a Y line fractions of Y = .93, .71,
.50 to represent layers which are all PZT fibers, 2/3 PZT fibers and 172 PZT fibers
respectively. The actuators as modeled then had three 100 pum thick piezoelectric

composite layers on each side of a 25 pum thick brass central electrode with 10 pm thick
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aluminum electrodes on the surface for a total thickness of 645 um and a total length of 50
mm. This represents the type of actuators that are currently being fabricated. These were
modeled using ANSYS in the 2D plane stress mode which gives displacements that agree
well with a full 3D model, but with much less computational effort. The results for this
FGM bimorph are compared to a non-FGM bimorph which was dimensionally identical,
but had the effective properties for the Z = .99, Y = .93 layer throughout. Both of these
models were subjected to an applied electric field of 500 volts/mm. ‘These' results for axial
stress, Oy, are shown below in Figure 26.

From these results it is seen that ‘the FGM bimorph is superior with a tip
displacement 187 um, and a maximum axial stress in the piezoelectric layers of 1.27 MPa
compared -to 175 pm and 2.08 MPa respectively in the non-FGM bimorph. The reduced
stresses are likely due to the gradual build up in stress through the three layers of the FGM
instead of the much quicker ramp up evidenced in the single layer of the non-FGM
samples. The FGM bimorph also compares very favorably with the results for a
monolithic FGM monomorph reported elsewhere, as the tip displacement of our FGM
bimorph at 500 volts/mm equates to 37.4 um/cm bending displacement which is superior
to the values of 28 um/cm for the monolithic FGM monomorph.

Initial comparison of the FGM to non-FGM bimorphs may only show a 7%
increase in tip deflection, but there are other benefits to the FGM which go along
favorably with this increase. Use of the FGM bimorph as opposed to the non-FGM
bimorph has led to a reduction in axial stress of 39%. In addition to this, there is the fact
that the FGM only uses about 75% of the expensive ceramic piezoelectric fibers required
for a non-FGM bimorph of identical thickness, resulting in significant cost savings and -

reduced weight.
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Figure 26. Results for axial stress, 6. (A) FGM bimorph. (B) non-FGM bimorph.

Further examination of the plots in Figure 26 show that the highest stresses are
actually in the aluminum surface electrodes. With this in mind, it will be possible to
achieve higher displacements by replacing the aluminum foil with a different electrode
material that has a lower stiffness (more flexible), such as a conductive polymer film or

conductive epoxy paint.

3. Design of Laser Based Displacement Measurement System

To allow accurate measurement of tip displacement induced in the FGM bimorph a
laser based displacement measurement system was designed and fabricated as shown
below in Figure 27. The use of a laser based transducer allows for non-contact
measurement of tip displacement to allow for true no load displacement measurements.
The incorporation of and x-y translation stage into the measurement system allows
measurements to be easily taken at various points on the specimen. The data acquisition
and control of the system is done with a Windows based PC. The accuracy of the system

is £3um in one location and +5um when scanning over a surface using the x-y stage.
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Figure 27. UW Designed and fabricated laser based non-contact displacement measurement system.

4. Concluding Remarks And Future Work

The use of FGM in piezoelectric laminates reduces the stress field while increasing
the out-of plane displacement as compared with the standard bimorph. The optimization of
the material property gradient profile within the FGM laminae provides hiéher out-of-
plane displacement while reducing the stress field. The CLT and 2D elasticity solution of
out-of-plane displacement and stress field are close to those obtained by FEM analysis.

The effective material properties for piezoelectric fiber based composites were
predicted by using an FEM model of the fiber unit cell which allowed rectangular fiber
packing to be accounted for. It was found that the elastic constants are mostly only a
function of the 6verall volume fraction v, while the piezoelectric and dielectric conétants
were more strongly affected by changing the Z line fraction alone than by changes in vy.

Using these material properties allowed modeling of piezoelectric fiber based
FGM bimorph actuators which are under development and indicates that they have
advantages over non-FGM bimorphs and also have higher deflection than for other
existing monolithic (non-fiber based) FGM monomorphs.

Fabrication of such actuators is considered to be a key target of our future work, as
well as the validation of the analytical modeling as compared to the experimental data. In
conclusion, the concept of FGM is found to be very useful in reducing the stress field at
the interface where large mismatch in strain exists, thus inducing large stress field, which

can be reduced by using the FGM interface design.
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